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Abstract

A theoretical model based on the rigid, perfectly plastic material idealization is proposed to simulate the dynamic
behaviour of two deformable beams colliding with each other. The mid-point of a moving free—free beam is assumed to
impinge on the tip of a cantilever beam with the beam axes perpendicular to each other. Complete solutions are ob-
tained for various deformation mechanisms during the dynamic response process for the two deformed beams, and
plastic shear sliding is taken into account. Attention is focused on the partitioning of the input energy between the two
deformed beams after impact. A deformation map in a governing parameter plane is constructed to permit the cal-
culation of the energy partitioning for a range of the beams’ parameters. This consists of nine regions corresponding to
various deformation mechanisms. Typical numerical results are presented to demonstrate the influence of structural and
geometrical parameters such as the ratios of the fully plastic bending moments of the two beams, of their fully plastic
shear forces, of their masses per unit length and their length, on the energy partitioning after impact. Finally, the
severance limit is given for the case of both beams having rectangular cross-sections. This indicates that shear sliding
failure may happen in either of the beams if the initial kinetic energy is sufficiently large. © 2000 Elsevier Science Ltd.
All rights reserved.
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1. Introduction

Over the last 50 years, the rigid, perfectly plastic material model has been widely adopted to study the
dynamic behaviour of structures subjected to intense dynamic loading. By neglecting the elasticity and
strain-hardening of the material, this idealization significantly simplifies the deformation mechanism of the
structure without losing the key features of its dynamic response. Symonds (1967) and Symonds and Frye
(1988) have shown that this idealization is applicable if the input energy is much larger than the maximum
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elastic energy that can be stored in the structure and if the duration of the applied pulse is shorter than the
fundamental period of the elastic vibration of the structure. Generally speaking, a complete solution for the
structural response to impact/pulse loading can be obtained from a series of dynamically admissible de-
formation mechanisms of the structure. These satisfy the equations of motion, the force boundary con-
ditions and do not violate the yield criterion at any point in the structure. This kind of complete solution
provides a better estimation of the overall response, including the permanent deformation and the distri-
bution of the dissipated energy in the structure, compared with that predicted by a mode approach (Stronge
and Yu, 1993).

A review of the studies in this field indicates that almost all the previous studies deal only with the
following cases: (a) where the magnitude, duration and pulse shape of the external loading applied to the
structure are specified, e.g. step loading or a rectangular pulse; (b) where the magnitude and the distribution
of an initial velocity field applied to the structure are specified; or (c) where the structure is subjected to
impact by a rigid mass moving at a given initial velocity. It is evident, therefore, that none of these cases has
considered the collision between two deformable structures. The article by Stronge and Shu (1989) con-
sidered interacting multi-component beam structures, but these structural components were connected and
loaded rather than colliding with each other.

Impact between two deformable bodies or more specifically between two deformable structures could
occur in various engineering scenarios and is of practical interest. For instance, a dropped beam could
impinge on another beam when a space truss is being erected or collapses, or a whipping pipe could impinge
on another pipe following a pipe-whip incident in a nuclear or chemical plant (Reid et al., 1998). In all
cases, the colliding components are both deformable. Qualitatively similar behaviour occurs when an au-
tomobile crashes into a roadside parapet or strikes another vehicle.

In an attempt to analyse this kind of problem one needs to consider whether or not the classical rigid,
perfectly plastic approach (RPPA) can still be applied to the collision between two deformable structures.
By employing the RPPA in studying the title problem, i.e. that of a moving free—free beam striking the tip
of a cantilever beam, this article is aimed at demonstrating the applicability of the RPPA as a simple but
powerful tool for this new category of structural impact problems.

2. Theoretical model
2.1. Deformation mechanisms during the initial shear sliding phase

Consider a horizontal free—free beam of uniform cross-section moving in a vertical plane with an initial
transverse speed, V. Assume that at time z = 0 the mid-point of this free—free beam strikes the tip of a
cantilever beam of uniform cross-section. When the collision occurs, both the beams are in a horizontal
plane and perpendicular to each other and the initial velocity of the free—free beam is normal to this plane,
as indicated in Fig. 1.

As shown in Fig. 1, contact will occur at the mid-point of the free—free beam, A, and the free tip of the
cantilever beam, A’. It is further assumed that during the following dynamic response of the system after
impact, the free—free beam remains adhered to the tip of the cantilever beam until its initial kinetic energy
has been entirely dissipated by the plastic deformations of the two beams.

Two of the earliest models for beam impact should be mentioned here, viz. that proposed by Parkes
(1955) for a rigid, perfectly plastic cantilever beam subjected to impact by a rigid moving mass at its tip and
that presented by Lee and Symonds (1952) for a rigid, perfectly plastic free—free beam subjected to a tri-
angular pulse at its mid-span.

According to the deformation mechanism suggested by Parkes (1955), a travelling plastic hinge will
initiate at the tip of the cantilever when the rigid moving mass suddenly strikes the tip if no limitation is
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Fig. 1. A horizontal free—free beam moving in a vertical plane strikes the tip of a horizontal cantilever beam which was perpendicular to
the free—free beam before impact.

imposed on the transverse shear force generated in the beam. The subsequent deformation mechanism
consists of a travelling plastic hinge, which moves along the beam until it reaches the clamped root. This
plastic hinge then remains stationary at the root until the rest of the kinetic energy of the system has been
dissipated.

Similarly, according to the modes proposed by Lee and Symonds (1952), the deformation mechanism of
a free—free beam in the transient phase contains a stationary plastic hinge at the mid-span and two tra-
velling plastic hinges moving away from it. When the travelling hinges cease to move and vanish, the
transient stage ends and then each half of the beam rotates about the central stationary hinge as rigid bodies
and the central hinge dissipates the rest of the kinetic energy.

It should be noted that both Parkes (1955) and Lee and Symonds (1952) in their early studies neglected
the effect of finite shear strength, so that an infinitely large shear force is accommodated at r = 0. This defect
was remedied in later studies (e.g. Karunes and Onat, 1960; Nonaka, 1967; Symonds, 1968; Liu and Jones,
1988; Stronge and Yu, 1993; Forrestal and Hanchak, 1999) of the dynamic behaviour of rigid, perfectly
plastic beams in which the effect of the shear deformation was incorporated into the deformation mech-
anisms.

In order to establish a more reasonable model for a moving free—free beam striking a cantilever beam,
the transverse shear force is limited by the fully plastic shear force of the beams in the following analysis of
the transient phase of the problem represented in Fig. 1.

If the free—free beam of cross-sectional area A and the cantilever beam of cross-sectional area A., have
yield shear stresses given by 1, = ay,/2 (or 11, = 01,/v/3) and 1., = d.,/2 (or 1., = 0.,/V/3), Tespectively,
depending upon which of the Tresca or von Mises yield criterion is used, then the fully plastic shear forces
for the two beams are

pr :Afffln (1)

Qcp = Acfcm (2)

respectively. In the following, subscripts f and ¢ denote the free—free beam and the cantilever beam, re-
spectively, and subscript p denotes yield values.

At the instant when the moving free—free beam strikes the tip of the cantilever beam, the impact force is
so high that shear sliding first takes place in the component that has the lower fully plastic shear force.
Clearly, shear sliding will first take place at the tip of the cantilever beam if

Oy < 20x,. (3)
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Otherwise, shear sliding will first take place at the mid-span of the free—free beam.
For convenience in the derivations in the following sections, P is defined as

Ps = min <Q2CP;pr>a (4)

and

_ AL M, L

me
s = ; = ) of = 7 = 5
=3 T, ML b= (5)

where My, and M., are the fully plastic bending moments; L., the length of the cantilever; L, the half-
length of the free—free beam; and m;; and m, are the masses per unit length of the free—free beam and the
cantilever beam, respectively. Which beam is subjected to shear sliding at the impact region determines
whether P is equal to Q.,/2 or Q).

The next step in the analysis is to construct the bending deformation mechanisms for both beams during
the shear sliding phase. According to the analysis given by Lee and Symonds (1952), for the free—free beam
there are three possible deformation mechanisms. If ¢, < 2, no plastic hinge appears in the free—free beam,
so it moves as a rigid body. If 2 < ¢, < 11.4, a plastic hinge forms at the mid-section and both halves of the
beam rotate about the hinge. If g; > 11.4, a three-hinge mechanism forms, in which one hinge is at the mid-
section while the other two hinges locate at a distance < 0.404L; on both sides of the mid-section.

There are three possible deformation mechanisms for the cantilever beam. If g, < %y /M, 0o plastic hinge
appears in the beam and it remains stationary except that shear sliding is allowed to appear at the free tip. If
by /ng < g5 < 3y/ny, a plastic hinge forms at the clamped root and the beam rotates about the root as a rigid
body. If 3y/n < g5, a plastic hinge forms within the beam at a distance less than L. from the tip, the
segment between the tip and the hinge rotates about the hinge, whilst the other segment between the root
and the hinge remains stationary.

The above analysis can be summarized by a map in the g, ~ /5 plane as shown in Fig. 2. The map
consists of nine regions corresponding to different deformation mechanisms during the plastic shear sliding
phase. These are

Plza ‘ —-
2__{ 0 \4 12 16 20 24 28 32
Fig. 2. A map on the ¢,—)/n plane, showing nine regions corresponding to various deformation mechanisms during the plastic shear

sliding phase. The solid and hollow dots appearing in the sketches of deformation mechanisms represent the plastic hinges in the free—
free beam and the cantilever beam, respectively.
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Region I g, < 2 and ¢, < 7/2n, no plastic hinge appears in either beam.

Region II: g, <2 and y/2n4 < g5 < 3y/2n, a single plastic hinge forms at the root of the cantilever

beam.

Region III: q; < 2 and 37/2n, < ¢, a single plastic hinge forms at an internal cross-section of the can-

tilever beam.

Region IV: 2 < g, < 11.4 and ¢, < y/2#n,, a single plastic hinge forms at the mid-section of the free—free

beam.

Region V: 2 < gy < 11.4 and y/2n, < ¢s < 3y/2n, two plastic hinges appear, one of which forms at the

root of the cantilever beam and the other one forms at the mid-section of the free—free beam.

Region VI: 2 < g, < 11.4 and 3y/2n, < gs, two plastic hinges appear, one of which forms at an internal

cross-section of the cantilever beam and the other one forms at the mid-section of the free—free beam.

Region VII: g, > 11.4 and ¢, < y/2#, three plastic hinges appear, one of which forms at the mid-section

of the free—free beam and the other two form at both sides of the mid-section.

Region VIII: g > 11.4 and y/2n, < qs < 37/2n,, four plastic hinges appear, one of which forms at the

root of the cantilever beam and the other three form in the free—free beam.

Region IX: g; > 11.4 and 3y/2n, < g5, four plastic hinges appear, one of which forms at an internal

cross-section of the cantilever beam and the other three form in the free—free beam.

Each of these regions gives a particular deformation mechanism in the initial, shear sliding phase, which
greatly affects the development of the succeeding deformation process after the shear sliding phase ceases.
Consequently, the final partitioning of the input energy between the cantilever beam and the free—free beam
is also significantly different, which is a key point of this study.

2.2. Analysis of the entire response process for region I1X

It is clear from Fig. 2 that, although nine deformation mechanisms are possible, Region IX is the most
general and complicated response mechanism among them. It will be noted in the following section that the
development of the deformation starting from Region IX will experience most of the deformation mech-
anisms related to the other regions shown in Fig. 2. Therefore, the derivation of the governing equations
concentrates on Region IX. The equations relevant to other regions are given briefly in Appendix A.

2.2.1. Phase I: shear sliding phase (0 <t < t;)

For the free-free beam, the velocity diagram in half of the beam (outside the shear band) is as shown in
Fig. 3(a), where W, 0, and ¢ denote the velocity of the outer parts of the beam just outside the possible
shear band around the contact point A, the angular velocity of segment AH and that of HB relative to AH,
respectively. x, = AH is the distance of the hinge H from the impact point. Since shear force P; remains
constant in this phase, the travelling plastic hinge speed x, = 0. As a result, the equations of motion for half
of the beam are

. e
_Psmf<VV0xh +%>7 (6a>
Lo
72pr = my VV())Ch —+ XLH s (6b)
2 3
. . (L —xp)é
T I kS (6¢)

2
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Fig. 3. Deformation mechanisms in Phase I (shear sliding phase): (a) for the free—free beam and (b) for the cantilever beam.

me(L — x0)’ (W +x00)  mp(L —x,)°
+
2 3
where m; is the mass per unit length of the free-free beam. For convenience, the equations are re-written in
terms of non-dimensional variables defined as follows:

Go=mfle o= Wo/Le =t ()~ d()/de. )
I’}’lfo

Thus, Egs. (6a)-(6d) are re-cast as

= pr; (6d)

oo

2

oo 9
Gt + 520 = g, (5a)
(G, a0
oo oo ¢ B
Co+5h0+(1*5h)§*0, (8¢)
WGorad)a-ar i -aye-1 (8
The equations can be solved by expressing 2;, Cg and 35 in terms of &,. They are given by
0o 1 1
(=12 ——-5 ). (9a)
((1 — &)’ &ﬁ)
oo 12 1
LB (9b)
G Gl =&
0o 12
b= (9¢)

(1-&)
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Substituting Eqgs. (92) and (9b) into Eq. (8a), leads to a relationship between ¢ and &, as

1 2
gs=—|6- Lz . (10)
h (1-¢&)
As it is required that g, > 11.4, Eq. (10) results in
¢ <0.404, (11)

which is a necessary condition for Region IX. v o
When ¢, is given, &, is deduced by Eq. (10), and then {,, 6 and ¢ can be determined by Eq. (9). By
integrating Eq. (9) with respect to 7, it is found that

CO _ lz(th—l)TJr\/z,

12
"Tan-g) (122)
6(2511—1) )

_ 6@ = 1) 7 12b
€0 éﬁ(l—éh)z‘[ +\/_T7 ( )
° 12 18
o= ° 12

{5;’; éha—éh)z}T (120
6 9
g=>__ 7\ 12d
{5131 éh(l_éh)z}r (12
° 12

_ 12

Ty 2l
6 2

-_° 2 12f

AT (120

where
;= el 1
i (13)

represents the non-dimensional input energy, i.e. the non-dimensional initial kinetic energy carried by the
moving free—free beam.

On the other hand, for the cantilever beam, the velocity diagram outside the possible shear band is as
shown in Fig. 3(b), where /¥ and x. denote the velocity just outside the possible shear band close to the tip
of the cantilever beam and the distance between the plastic hinge and the tip, respectively, during the shear
sliding phase. It is evident that as long as the localized shear deformation occurs either in the free—free beam
or in the cantilever beam, we always have W # W, during the shear sliding phase.

By noting that x. = 0, because the shear force P; remains constant, the equations of motion for the
cantilever beam are

1 d, .

2P, = zmca(ch), (14a)
1 d,..,

Mcp—gm(;&(ch). (14b)
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The non-dimensional forms of above equations are

B d pLE.
24s=7 1 (L&) = 5 (15a)
Bd o, pLE
= - — = — 1
y=g () =, (15b)
where { = W/L¢, & = x./L¢. Eliminating { from the above equations results in
3y
&= g (16)
Since it is required that
3y
= ) 17
27’0f ( )
we have
éc < Neg- (18)
Substituting Eq. (16) into Eq. (15) and integrating it with respect to 7, we have
o 8q2
{=2=1, 19a
3B (192)
44>
{=-172 19b
g (190)

The shear sliding phase terminates when { = {,, and by considering Eqgs. (19a) and (12a), the non-
dimensional time when shear sliding ends is found to be

8qs 1 1 — 2Eh)
\/_/[ Vﬁ &Gl —&) ] 20)

Substituting Eq. (20) into Egs. (12) and (19), {,, ZO, 0, 5, &, ;5, {, and Z can be obtained at the end of the shear

sliding phase, T = 11, and are defined as (o, (o1, 01, 01, ¢y, Py, (4, and (.
The shear deformation at the impact cross-section between the cantilever beam and the free—free beam is
given by

AL = Lo — G (21)
The fraction of the total input kinetic energy absorbed in plastic shear sliding is approximately
E,  2q.Af 3gBE(l — &)’

- — . 22
Ei, Y ARPE (1 — &) + 991 — 2&,)] -

2.2.2. Phase Il double travelling hinge phase (t; <t < ty)

As soon as { = {, the impact force, 2P, in the contact area between the cantilever and the free—free beam
will reduce sharply. The plastic hinges H and H’ (symmetric hinge to H on the right hand part of beam) in
the free—free beam and C in the cantilever beam become travelling hinges moving away from the impact
point A.
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For the free—free beam, the equations of motion for segment AH are

2 g

7P:mf (th +X;@>, (23)
o s 35

—2pr = mg < Vszh +x;0> s (24)

and for segment BH, they are

(Lt —xn)¢)

W+Xhé+xh9+ D)

—ingp =0, (25)

me(Ly — xh)2
2

me (L — xp)

3
(W +xhé + xp0 — 5C1]¢> + 3 ¢ = M;,. (26)

For the cantilever beam, the equations of motion for segment AC are
2P = %mC(WxC + Wxe), (27)

M, = %mc(Wxg + 2W5ccxc). (28)

Eliminating P from Egs. (23) and (27) and re-arranging Egs. (21)-(26) in their non-dimensional forms,
we have

408 +280 + BLE+ &0 =0, (292)
11& 4108 +2=0, (29b)
?+éh3+gh5+(l_25h)i£—§h¢°>:0, (29¢)
U8 (Fr g+ di- ) + 152051, (290
(&428s = % (29¢)

oo oo oo o o

Egs. (29) can be put into convenient forms for numerical calculations by expressing {, 0, ¢, &, and &, in
terms of &, and &, resulting in

czé{ﬁz_w} (30a)

éc ﬁéc + 2éh

0o 3 6 2
9;%*(5)

3y 6(’/"‘%‘%)
BB+ 2&/c | [ (300)
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o0 12

=—, 30
o 1 6 3y 6 6(y + 52 —3)

_ 6 3 _ ) 30d
: (5—5)[5ﬁ+ﬁé§ (- &Be+2a) | (00
o 6yl
50:%, (30e)

The initial conditions for Phase II, which come from the state when Phase I terminates, are given by

C|1:11 = é’b C = CI?

=14
6|r:rl = 017 5 = é)Ia (31)
¢|r:‘q = ¢I7 ¢ = ¢I),

T=T11
¢hl,—,, = given from Eq. (10),

éC|r:‘r] = 23_/ :
qs

Eqgs. (30a)—(30¢) together with the initial condition (31) can be solved using a Runge-Kutta procedure.
As the response develops, the travelling plastic hinge, C, in the cantilever beam approaches the clamped
root whilst the travelling plastic hinges, H and H', on the either side of the mid-point of the free—free beam
move more and more slowly as the difference between the relative angular velocities 6 and ¢ reduces.
Therefore, in each calculation step it is necessary to check the following two conditions:

Condition (i): whether or not the plastic travelling hinge in the cantilever beam, C, has arrived at the

clamped root in the cantilever beam, i.e. whether &, = #;

Condition (ii): whether or not the speeds of the plastic travelling hinges in the free-free beam, H and H’,

become zero, i.e. &, =0 (or 6 — ¢ = 0).

When Phase II ends depends upon, which one of these two conditions is first satisfied. If Condition (i) is
satisfied before Condition (ii), then the travelling hinge, C, will become stationary at the root of the can-
tilever beam while the H and H' hinges are still travelling along the free—free beam until their speed becomes
zero during the succeeding response (i.e. in Phase IIT). On the contrary, if Condition (ii) is satisfied before
Condition (i), then the travelling hinges H and H’ will vanish and the two halves of the free—free beam
rotate about the stationary hinge at the mid-section, whilst the travelling hinge, C, is still moving to the root
of the cantilever beam until it arrives there during the succeeding response (i.e. in Phase III).

Accordingly, Phase III will be analysed for these two different cases as follows.

2.2.3. Phase III (t; <t < ty), if Condition (i) is satisfied before Condition (ii)
As soon as &, = 1, the travelling hinge, C, reaches and remains at the root of the cantilever beam. Thus,
the cantilever beam rotates about the stationary root hinge as a rigid body in the following phases of the
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Phases I & 1T Phase III Phase IV Phase V
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Fig. 4. Evolution of the deformation mechanisms in the case starting from a shear sliding phase located in Region IX. The solid and
hollow dots appearing in the sketches of deformation mechanisms represent the plastic hinges in the free—free beam and in the can-
tilever beam, respectively.

response. The deformation mechanism is as shown in the lower half of Fig. 4. The equations of motion
given by Egs. (23)-(26) for the free—free beam are still valid, while for the cantilever beam the non-
dimensional equation of motion is given by

Wm.L2

2PL. — My = == (32)

Eliminating P from Egs. (21) and (29), the non-dimensional form of the equation of motion can be
expressed by

oo 1 lzle Y
C(éh +6ﬁ’7cf> JrTJF%*O- (33)
The non-dimensional Egs. (29b) (29d) which are the equations of motion for the free—free beam are still

oo 00 00

valid. Moreover, (, 0, ¢, and éh can be expressed in terms of &, as

< 6(6n. — &)
- 34
NerEn (2PN + 3&n) (34a)
090 — _g _ 9(6’7cf - 'Véh) (34b>

fi ’Icffﬁ(zﬁ”lcf +3¢&) 7

L. 6 6 3(61¢ — vén)
" 34
(0 9) (éﬁ (1@)ﬁmf@(zﬁmﬁ%v)’ N
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oo 12
go_ 12 (34d)
(1)’
The initial conditions, which come from the state when Phase II terminates, are given by
C|r:m = {n, ¢ = {n,
=111
0|T:T11 = O, 0 = O,
=111
¢|‘c:r” = d)lh ¢ = ¢ll7 (35)
=11

Chlemry = Ehr-

ngen Phase III terminates depends upon, whether, foh =0 or Z =0.
If &, = 0 at the end of Phase III, then from Eq. (34c) we have

6 6 3(6ncf — Vih)
a- =0 36
(éﬁ (1—5h>2+ncféh<2ﬁncf+3éh>) ’ (36)

which gives the limiting position of the travelling hinge when it vanishes in the free—free beam. After that,
the response enters Phase IV in which stationary hinge mechanisms exist in both beams. One hinge is at the
root of the cantilever beam and the other locates at the mid-section of the free—free beam. The rest of the
kinetic energy of the system will be dissipated by these two stationary hinges. A detailed analysis of Phase
IV for this response mechanism is given below.

If { = 0 at the end of Phase III, the motion of the cantilever beam ceases and it remains stationary in the
following phase. The rest of the kinetic energy of the system will be dissipated by the three plastic hinges in
the free—free beam, i.e. one stationary hinge, A, at the mid-section and two travelling hinges, H and H’, on
both the sides of the mid-section of the free—free beam (Lee and Symonds, 1952).

2.2.4. Phase III (t; <t < ty), if Condition (ii) is satisfied before Condition (i)

When the speed of the plastic travelling hinges, H and H', becomes zero in the free—{ree beam, i.e. fh =0
(or 0 qS 0), the beam deforms in a single-hinge mechanism with a stationary hinge at A whilst the
travelling hinge, C, in the cantilever beam is still moving towards the root. By noting that Eqgs. (30a) and
(30e) are still valid and considering the moments taken about A, for the rigid segment BA, we have

WL 0L}
prmf<7f+Tf>, (37)
which in the non-dimensional form is given by
OCO 1 0o
7T30="1 )

oo 00

Further, {, 6 and éc can be expressed in terms of &, as

o 12¢,— 6y
C &2+ e’



T.X. Yu et al. | International Journal of Solids and Structures 38 (2001) 261-287 273

w188 -9
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_ L 6ee =3y 41
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The initial conditions of Phase III, which come from the state when Phase II terminates, are given in
Eq. (35).

Phase III ends when the travelling hinge in the cantilever beam arrives at the root of the beam, i.e.
&. = ny. Then, the response enters Phase IV in which stationary hinge mechanisms are formed in both
beams. One hinge is at the root of the cantilever beam and the other locates at the mid-section of the free—
free beam.

2.2.5. Phase IV: two stationary hinges (ty; <t < ty)

Since the cantilever beam rotates about its root hinge and the free-free beam rotates about its mid-
section as rigid bodies, the equations of motion in non-dimensional form are given by (a detailed derivation
can be found in Appendix A, see Region V)

2qncf -V = %Cﬁn(z;fv (42>
fe]e) 090

—g=C(+2 43

g="{+5, (43)
[

B 44
513 (44)

After eliminating ¢ from the above equations, { and 6 can be expressed by

< 6(3ncf B V)
_ , 45
’/Icf(3 + Zﬁy’cf) ( )
o 9(Bnes —7)
0=—|34—otd — 0| 46
’701‘(3 + 2ﬂrlcf) ( )

Integrating the above equations with respect to T and applying the initial conditions at the end of Phase III,
we have

p 6(3’/Icf ) 2
(= e — V) (s 47
ncf(3 + Zﬁ cf) H ( )

3(3’1(,f ) o
(= ———————r+§r+c, 48
ncf(?’ +2ﬁ cf 1 jits ( )

9(3ner — »} ;

34— 0 49
|: +170t 3+2ﬁ’7ct) o o ( )

1 e —7) |-, ¢
0=—=3+——"— 0 Or- 50
2 |: * ncf(3 + Zﬁncf) e e O ( )
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When Phase 1V terminates depends upon, whether { = 0 or 8 = 0. Firstly, consider the case when { = 0.
From Eq. (43), it is found that

Fon (34 2
(i), = szc(ry( _‘;nf)”lct) . (51)

On the other hand, if g) = 0 it follows from Eq. (45) that

(t1v), = Ouiner (3 + 2Bner)
N2 360, + 6B — 9y

(52)

Egs. (51) and (52) provide two possible times when Phase IV terminates.

2.2.6. Phase Va

If (trv), > (t1v),, which indicates that the cantilever beam ceases its motion before the free—free beam
does, the following Phase V will dissipate the rest of the kinetic energy in the free—free beam through an
additional rotation, A6y, at the hinge located at the mid-section. According to the equation of energy
conservation, we have

prAOVf = éme?O%V, (53)

where Oy is the angular velocity about the mid-section hinge when { = 0.

2.2.7. Phase Vb

On the other hand, if (7v), < (t1v),, which indicates that the free—free beam ceases its motion before the
cantilever beam does, the following Phase V will dissipate the rest of the kinetic energy in the cantilever
beam through an additional root rotation, Afy., and energy conservation requires

McpAOVC = (émch + Wlfo)V.VI%;, (54)

where Wy is the vertical velocity at the tip of the cantilever beam when 6 = 0.

2.3. Energy partitioning for a cantilever beam struck by a free—free beam

An interesting issue to resolve is how much of the input kinetic energy is dissipated in the target can-
tilever beam and how much is dissipated in the flying free—free beam. Using the complete solutions for the
dynamic response described above, together with the detailed analysis given in Appendix A combined with
the deformation mechanism map shown in Fig. 2, the energy partitioning in the two beams can be ob-
tained. This can be expressed as fractions of the initial energy dissipated in the different deformation
modes.

In accordance with the regions shown in the map (Fig. 2), the following results can be established. Let
E., E, E., Er denote the input kinetic energy, the shear sliding energy, the energy dissipated in the cantilever
beam and the energy dissipated in the free—free beam, respectively, during the impact response process.

Region I:
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Region II:
E — qsPn E _ 6gstes — 37 ﬂ —0
En gk +6ng) =3y En Bk +6ng) =37 Ew
Region I1I:
Ey Py E 4 B 0
En 44 Py’ Epn 44 Py’ Ei .
Region IV:
E; qs E. 0 Er _ 3¢,—6
En 229,—3)" Ew = En 2(2¢,-3)
Region V:
E _ g5 E. _ 9l E 26
Ew  3(Q2qsng =) +2B0(2¢s—3)"  Ew  Hgl’ En L

where (. and 0; are the final non-dimensional deflection at the tip of the cantilever beam and the final
rotation angle at the mid-section of the free—free beam, respectively.

Region VI:
E — qsﬂngf i _ y(l//ct + l//cs) & — 2_0f
E; 2[(2gs — 3)&73{ + 3y]’ E;, A ’ E; a

where , and y are, respectively, the total rotations caused by the travelling hinges as they pass
through the free—free beam and the rotation angle about the stationary hinge at the root of the cantilever
beam.

Region VII:
E _g¢ &GU-&) E _o  Er _200u—¢u) +26;
En 127 (1-2&)° Ey, Ei 7 '

Region VIII:

E _ 4P (1 — &)’

En 1285 (1 = 2&) +3&(1 = &) (2qsnq =)

E _ VCC ﬂ _ 2(911 - ¢II) + 20¢ or E _ 2((‘)[1[ — ¢III) + 20
Ein y](:f}v7 Ein A Ein A ’

Region IX:

E _ 3qs7PE(1 — &)’

En  4Rg25(1— &)’ + 991 - 2&,)]

E _ ’V(lpct + lpcs)
E, A ’

Er 200 +2(0u — ¢u) or B _ 2(0m — dur) + 20

=

A Ein A

E¢ _ 2(‘91V — (151\/) + 20;
or —= .
Ei A




276 T.X. Yu et al. | International Journal of Solids and Structures 38 (2001) 261-287

3. Typical examples and discussion

3.1. Example 1: a cantilever beam of rectangular cross-section struck by a moving free—free beam of
rectangular cross-section

It is assumed that both beams are made of the same material and the cross-sections of both beams are
rectangular with the same width b and depths /. and /& for the cantilever beam and the free—free beam,
respectively. Other geometrical parameters are selected to be

Lf//’lf:30, ncf:Lc/Lf: 1

so that the half-length of the free—free beam is 30 times its depth and is equal to the total length of the
cantilever beam. The structural parameters are given by

My,  (h\’ he
pr hf hf
When &, < 2k, the plastic shear sliding will take place at the tip of the cantilever beam during an early
stage of the response. Explicitly,

Lihe . he
C ek

When A, > 24, the plastic shear sliding will take place on the mid-section of the free—free beam during the
early stage and we have

_ 2k
=T

Fig. 5 shows the partitioning of the input energy between the two beams for both the cases. It is observed
that more than 98% of the total input energy will be dissipated in the cantilever beam when A/ < 1, in

qs 60.

Es/Ein;Ec/Ein;EI/E in

1.0 —o-0-0-0-omos = L/h=30
o L/L=1

Cantilever beam
Free-free beam
Shear sliding in|cantilever beam
Shear sliding in free-free beam

o 4« e o

0.0

Fig. 5. The energy partitioning of the input energy E;, between the two beams of rectangular cross-section.
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which the maximum sliding energy is about 0.4% of the total energy and is dissipated in the cantilever
beam. With the increase of the ratio A./h¢, the energy dissipated in the free—free beam increases sharply. At
he/he = 3, most of the input energy (about 80%) will be dissipated by the free—free beam, while the can-
tilever beam only dissipates 18% of the input energy.

3.2. Example 2: a cantilever beam of solid circular cross-section struck by a moving free—free beam of solid
circular cross-section

It is again assumed that both beams are made of the same material and the half-length of the free—free
beam is equal to the total length of the cantilever beam (i.e. 5, = 1). The radius of the cross-section is Ry

for the free—free beam and R. for the cantilever beam, and L;/R; = 30 is taken. Since M;, = 46pR}/3 and
M., = 40pR}/3, where gp denotes the yield stress of the material, we have

M, R )’ me R )~

By using Eq. (2), it is found that when R, < /2Ry, the plastic shear sliding will take place at the tip of the
cantilever beam during the early stage of the response, and

3n Ly (R’ R\’
=22} = 1767 =2 ) .
1 16Rf(Rf> <R1»>

On the other hand, when R, > /2Ry, the plastic shear sliding will take place at the mid-section of the free—
free beam during the early stage of the response, and

3n Lf
9 =g R 35.34.

Fig. 6 shows the partitioning of the input energy between the two beams. It is observed that more than
98% of the total input energy will be dissipated in the cantilever beam when R./R; < 1, in which the
maximum sliding energy is about 1% of the total energy and is dissipated in the cantilever beam. With the
increase of the ratio R./R; from 1 to 2, a great part of the energy dissipation transfers from the cantilever
beam to the free—free beam. At R./R; = 2, only 10% of the input energy will be dissipated by the cantilever
beam and the rest of the input energy (about 90%) will be dissipated by the free—free beam, about 8% being
as the result of shear sliding.

3.3. The effects of the length ratio, n, on the energy partitioning

If both the cantilever beam and the free—free beam have the same cross-sectional geometry and me-
chanical behaviour, the influence of the length ratio, , on the energy partitioning between two beams is of
importance. Fig. 7(a)-(c) shows the energy partitioning of the input energy between the two beams, when
the length ratio, ., changes from 0.01 to 0.5, while values of y = 1, f = | and ¢, = 20, 60, 150 are taken. It
is observed that more than 98% of the total input energy is dissipated by the cantilever beam if 5, > 0.3,
which is independent of the magnitude of ¢g,. Even for a very short cantilever beam such as 0.1 < 5, < 0.3,
at least 30% of the input energy is dissipated by the cantilever beam. Therefore, for a target cantilever beam
with the same geometrical and mechanical parameters as that of the flying free—free beam, the length ratio
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Fig. 6. The energy partitioning of the input energy E;, between the two beams of solid circular cross-section.

equal to 0.3 is a critical value, beyond which most of the input energy (about 98%) will be trapped by the
target cantilever beam.

3.4. The effects of the fully plastic bending moment ratio, y, on the energy partitioning

The fully plastic bending moment ratio, 7y, is one of the important parameters to significantly influence
the energy partitioning between the target and driving beams. Fig. 8(a)—(c) shows the energy partitioning
for the total input energy versus the fully plastic bending moment ratio, y, when f = 1, . = 1 and values of
gs = 6,20 and 60 are taken. It is observed from Fig. 8 that there is a critical point at y = 5. In the
neighbourhood of this point the behaviour of the energy partitioning between the target beam and driving
beam undergoes a remarkable change, i.e. most of the input energy will be dissipated by the target can-
tilever beam when y < 5, while most of the input energy will be dissipated by the driving free—free beam
when y > 5. According to Fig. 8, it is clear that this characteristic is approximately independent of ¢;. On
the other hand, it can also be seen from Fig. 8 that, with the decrease of ¢;, the proportion of shear sliding
energy dissipated increases. It should be noted from Fig. 8(a) that in the case of ¢;= 6, when y > 12 the
cantilever target beam does not dissipate any energy since ¢; < 0.5y/f which belongs to Regions I and 1V,
as shown in Fig. 2.

3.5. The effects of the mass ratio, f, on the energy partitioning

Fig. 9 shows the energy partitioning versus the mass ratio, 5, when values of R = 1,5, = 1 and ¢; = 20
are taken. It is observed that with the increase of f, the plastic shear sliding energy also increases but
approaches a constant (14% of the total energy). When S = 30, the energy dissipated in the target cantilever
beam will decrease to 25% of the total input energy and that in the driving free—free beam will increase to
61%.
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Fig. 7. The influence of the length ratio ., = L./Lr on the energy partitioning of the input energy Ej, between the two beams: (a)
qs=20,y=1and f=1;(b) ¢y =60,y =1and f=1and (c) gs =150,y =1 and f = 1.

4. Severance limit

As seen in Section 2.2, in the dynamic response process after the collision of a free—free beam on a
cantilever beam, the first phase is a shear sliding phase. This is the case for all the parameter regions
discussed above. Obviously, if during Phase I, the shear sliding displacement in the free—free beam or in the
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Fig. 8. The influence of the fully plastic bending moment ratio y = M., /M, on the energy partitioning of the input energy Ej, between
the two beams: (a) ¢s = 6,7, =1 and f=1; (b) ¢, =20,n4=1and f=1; (c) ¢s = 60,5, =1 and = 1.

cantilever beam reaches the depth of the respective beam, a perforation or a cleavage will occur. The impact
velocity for which this first occurs is termed the severance limit herein. In principle, the relevant severance
limit can be determined for each of the nine regions shown in Fig. 2. However, since so many parameters
are involved, no closed-form expressions for the severance limit can be obtained.

Therefore, instead of providing tedious derivations of this limit for all possible cases, we shall concen-
trate on a special case, viz. Example 1 (Section 3.1), in which both the cantilever beam and free—free beam
have rectangular cross-sections. As in Example 1, both beams are assumed to have the same width, b, but
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Fig. 9. The energy partitioning versus the mass ratio f§ = m¢/m¢,qs = 20,1 =1 and R = 1.

different depths, 4. and /¢, respectively. The total sliding displacement during Phase 1 can be calculated
from Egs. (22), (A.5), (A.8), (A.16), (A.18), (A.20), (A.25) and (A.27).

Analysis of the above example indicates that severance may happen at the tip region of the cantilever
beam if &./hs < 2, or it may happen at the middle of the free—free beam if A./h; > 2. Whether it occurs or
not depends on the initial kinetic energy of the moving free—free beam, that is

1
Kio = 3mi(2Lo)Vy = meLe Vg (33)

which can be non-dimensionized using the fully plastic bending moment of the free—free beam as
A= Kf()/pr = MfoVOZ/pr. (56)

Accordingly, the severance limit can be depicted in the plane of parameters A4./A; and A.

For the cases of L./L; = 1,L¢/Ls = 30 and 10, the severance limits are represented by the solid lines in
Fig. 10(a) and (b), respectively. In each figure, the solid line divides the parameter plane into three regions:
severance in the cantilever beam, severance in the free—free beam and no severance. Thus, these figures can
also be regarded as shear failure maps.

It is seen from Fig. 10 that shear failure is most unlikely to happen when the depth ratio 4. /Ay is smaller
than but close to 2. This is because within this range of depth ratio, the resistances of both beams to the
shear sliding are almost identical, so higher energy is required to produce severance in one of them (i.e. the
cantilever beam in this case).

5. Concluding remarks

In this first attempt to analyse the dynamic behaviour of two deformable beams colliding with each
other, the rigid, perfectly plastic material idealization has been employed to obtain complete solutions for
their dynamic response and to explore the various deformation mechanisms involving plastic shear sliding
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Fig. 10. A shear failure map showing the severance limits of the beams: (a) n = L./Ls = 1 and L /hs = 30 and (b) 5 = L./Lr = 1 and
Lf/hf = ]0

and travelling or stationary plastic hinges. Particular attention has been paid to the partitioning of the input
energy between the two deformed beams after impact.

Typical numerical results have demonstrated that structural and geometrical parameters, such as the
ratio of the fully plastic bending moments of the beams, the relative magnitudes of the fully plastic shear
forces, the masses per unit length and the lengths of the beams, all have significant influences on the energy
partitioning. Finally, the severance limit has been calculated for the case when both beams have rectangular
cross-sections, indicating that shear sliding failure may happen in either of the beams if the initial kinetic
energy is sufficiently large.

It can be seen from the present analysis that, because of the coupling of the two beams through their
common interaction force and contact point deflection, their deformations consist of much more compli-
cated combinations of mechanisms compared with those for a beam struck by a rigid projectile, even within
the rigid, perfectly plastic idealization which greatly simplifies the deformation patterns. It is evident that
these idealized deformation mechanisms and the relevant failure modes should be further verified by ex-
periments and elastic—plastic finite element (or finite difference) analyses, similar to those performed by the
authors for cantilever beams (Reid and Gui, 1987; Yu, 1993) or free—free beams under local impact (Yu
et al., 1996).
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Appendix A

The dynamic response for the regions other than Region IX (Fig. 2) is described in this appendix. Note
that the derivation of the equations is the same as those in Sections 2.2 and 2.3 in this article.
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A.1. Region VIII
A.1.1. Phase I: shear sliding phase (0 <t < t;)

For the free—free beam, the non-dimensional Egs. (8a)—(8d) and (12a)—(12f) are still valid, and the non-
dimensional equation for the cantilever beam is

1 0o

2qne =7 =3 LB (A1)
Integrating the above equation with respect to 7 yields

° 3(2qsng — )
(=—"F5—"1r1 A2
ﬁ”gf (A.2)

3(2qshe =)

( = 40‘5 . A.3
2Bn% (A-3)

The shear sliding phase terminates when { = {,, and by considering Eqgs. (A.2) and (12a), the non-
dimensional time when shear sliding ends is found to be

V.
T = —.
U™ 30—y | 120-28,)
i 2(1-&,)°

(A4)

The shear deformation at the impact cross-section between the cantilever beam and the free—free beam is
estimated by Eq. (21) and the portion of plastic shear sliding energy out of the total input kinetic energy is
E_2q,AL gk & (1 — &)’
En 4 12pn%(1-2&) +3& (1 - &)’ g — )

The following response phases will experience the same deformation mechanisms as those in Region IX
beginning from Phase 111 when &, = 5.

(A.5)

A.2. Region VII
A.2.1. Phase I: shear sliding phase (0 <t < t;)

As there is no deformation in the cantilever beam during the whole response process, 2 =0and (=0,
and for the free—free beam the non-dimensional equations (8a)~(8d) and (12a)-(12f) are still valid. The
shear sliding phase terminates when {, = 0. From Eq. (12a), we have

Vg (1= &)

T = m . (A6)
Substituting Eq. (A.6) into Eq. (12b), gives
6(2&, — )7} LGl -&)
Afj=—"T—12 T = — —————— A7
TR N TR TN (A7)

The shear deformation at the impact cross-section between the cantilever beam and the free—free beam is
estimated by Eq. (21) and the portion of plastic shear sliding energy out of the total input kinetic energy is
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E_2q,AL g5 Gi(1— &)’ (A.8)
Ei, A 12 (1-2¢,) |

Since the cantilever beam will remain stationary in the following phases, the remaining kinetic energy of
the system will be dissipated by the three plastic hinges in the free—free beam, i.e. one stationary hinge, A, at
the mid-section and two travelling hinges, H and H’, on both the sides of this mid-section.

A.3. Region VI
A.3.1. Phase I: shear sliding phase (0 <t < t;)

For the free—free beam, the velocity diagram refers to Fig. 11. The equations of motion for the right half
of the beam are

2 ..
P = mf<WoLf +%0), (A.9)
o
My, = m(W; +%> (A.10)

and their non-dimensional form of the above equations after introducing the non-dimensional variables
defined in Eq. (7) are

oo

oo 0
—qs={p +§; (A.11)
-1 :% % (A.12)

Eliminating 6 from the above equations and integrating it with respect to 7, we have

{ = (6—4q.)t + V7, (A.13)

L= (3 —2¢)7 + Vit (A.14)

For the cantilever beam, the non-dimensional equations of motion (15a) and (15b) are still valid and the
solutions for { and { can be found from Egs. (19a) and (19b). The shear sliding phase terminates when

{ = {y, and by considering Egs. (A.13) and (19a), the non-dimensional time when shear sliding ends is
found to be

Fig. 11. The deformation mechanism of the free—free beam in Phase I for Region VI.
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BENA

T = s (AIS)
(49, — 6)pE; + 6y
whilst the portion of plastic shear sliding energy out of the total input kinetic energy is
2
B _2q:AG _ gsPe. (A.16)

Ein Ao 2[(2g—3)pE+ 3]

where ¢, is given by Eq. (16). The following response phases will experience the deformation mechanisms
which are same as those in Region IX beginning from Phase III when &, = 0.

A.4. Region V
A.4.1. Phase I: shear sliding phase (0 <t <t;)
For the free—free beam, the non-dimensional equations (A.11)-(A.14) are still valid, and for the canti-

lever beam its non-dimensional equation (A.1) is still valid. Following the same procedure as in the previous
section, it is found that

\/Zﬁﬂgf

1= : A.17

' 304 —7) + Bk (4gs — 6) (A17)
B _ 24,04 _ 9B , (A.18)
Ei A 3(2gsnee — ) + 2P0 (295 — 3)

The following response phases will experience the deformation mechanisms which are same as those in
Region IX beginning from Phase IV.

A.5. Region IV
A.5.1. Phase I: shear sliding phase (0 <t < t;)
As there is no deformation in the cantilever beam during the whole response process, { = 0 and { = 0,

and for the free-free beam the non-dimensional equations (A.11)-(A.14) are still valid. The shear sliding
phase terminates when {, = 0. From Eq. (A.13), we have

Vi
= A.19
B 4qs - 6 ( )
while the portion of plastic shear sliding energy out of the total input kinetic energy is
Es qu ACI QS
= = . A.20
E; A 2(2q,-3) (A.20)

The following response phases will experience the same deformation mechanisms as those in Region IX
beginning from Phase IV when { = 0.
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A.6. Region II1
A.6.1. Phase I: shear sliding phase (0 <t < t;)

For the cantilever beam, the non-dimensional equations of motion (15a) and (15b) are still valid, and for
the free—free beam there is no deformation and only a sliding occurs at the impact point; therefore, the
sliding is driven by

gs = —Co. (A.21)
Integrating (A.17) with respect to 7, we have

b= —gst+ V7, (A.22)
{o = 742”2 +Vx. (A.23)

The shear sliding phase terminates when Z = COO, and by considering Egs. (A.18) and (19a), the non-
dimensional time when shear sliding ends is found to be

e/
=70 7
qsBE; + 67
where £, is given by Eq. (16) and the portion of plastic shear sliding energy out of the total input kinetic
energy is
E _ 2qs ACI — ﬁéc
Ein A 4 + ﬁéc .
The following response phases will experience the same deformation mechanisms as those in Region 1X
beginning from Phase IV when 0 = 0.

(A.24)

(A.25)

A.7. Region I1

For the cantilever beam its non-dimensional equation (A.1) is still valid, and for the free—free beam there
is no deformation and only a sliding occurs at the impact point. Therefore, the non-dimensional sliding
equation (A.17) is valid. Following the same procedure as above, it is found

ﬁ’?zf\/I
T = < , A.26
: qs(Bng + 61e) — 3y ( )
Ey 2L asPnz (A.27)

Ew A qs(Bng+6ng) =3y
Since the free—free beam will remain stationary in the following phases, the remaining kinetic energy of the
system will be dissipated by the plastic stationary hinges at the root of the cantilever beam.

A.8. Region I

For this particular case, both the free—free beam and the cantilever beam remain undeformed during the
response process, and only shear sliding occurs at the impact point. According to the energy conservation,
the initial kinetic energy will be entirely dissipated in the shear sliding phase. Thus,
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1 2
2PAW = 2 2miLi Ty, (A.28)

where AW is the shear deformation at the impact point.
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